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Abstract

In this paper we study a generalisation of the dynamic Leontief input-output model. We
extend the standard dynamic Leontief model with the balance equation of non-renewable
resources. Obviously the non-renewable stocks will decrease exploiting primary resources. In
this study we examine the controllability of this extended model taking the consumption as
control parameter. Supposing a balanced growth both for consumption and production
whether how long will cover these scare resources the inputs of production and how the
lifetime of the system depends on the balanced growth rate and on the consumption as well?
To this investigations we use the classic results of the control theory and the eigenvalue
problems of the linear algebra.
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1. Introduction

Solution of environmental problems such as exhaustible natural resources urges a
searching analysis of the interaction between the development of the economy and the natural
environment. In this paper we present an empirical environmental impact study focusing on
the interdependence of the economic activities and the associated flow of non-renewable raw
materials. Despite known simplifications input-output analysis is a useful instrument to study
strategic directions of economic development, considering besides dynamic intersectoral links
also the interaction between the sectors of economy and the natural environment. Such
analysis is important for the development of the state regulation programs, which are integral
part of environmental-economic policy for any developed market system.

In this regard we consider the well-known dynamic Leontief input-output model
augmented with the balance equation of exhaustible primary resources. One of the questions
arising in this ecological input-output model, whether is this dynamic model controllable
considering the consumption as control parameter? In other words can the exploitation of the
natural resources be influenced through controlling the consumption in the economy? As it is
known a growing consumption requires growing production as well, therefore the non-
renewable stocks will decrease. The other question we are intend to answer whether how long
will cover these scare resources the inputs of production supposing a balanced growth both
for consumption and production as well? How the lifetime of the system depends on the
balanced growth rate and on the consumption as well?

To this investigations we use the classic results of the control theory and the
eigenvalue problems of the linear algebra.The next section presents the basic equation system
of the augmented dynamic Leontief system. The following sections examine the
controllability and the balanced growth path of the system respectively.



2. The augmented dynamic Leontief model

Our model is based on the equations of the dynamic multi-sector input-output model
well known in the literature. We extend this model with the balance equation of exhaustible
resources in order to analyse the linkage between the economy and the environment.

Suppose that there are n economic industries each industry producing a single
economic commodity and m primary resources used by the sectors of productions. (Each
industry may use more resources but at most m and let us suppose that m<n.) The input-output
balance of the entire economy can be described by the equations of economic goods and
resources. The equation of goods describes the balance between the total output of goods of
production and the sum of total input of goods of all activities of the economy and the
consumed goods.

X;=Ax;+ B( X1 — X))+ ¢4 (1)

The equation of resources describes the relation between the stock of exhaustible resources
remained after the exploitation of its in a given year and the stock of resources disposable in
the next year.

R, =R,— Dx, (2)
Where

- x,1s the n-dimensional vector of gross industrial outputs,

- ¢ is the n-dimensional vector of final consumption demands for economic
commodities,

- A is the (nxn) matrix of conventional input coefficients, showing the input of goods
that are required to produce a unit of product,

- B s the (nxn) matrix of capital coefficients, showing the invested products to increase
the output of the producing sectors by a unit,

- D is the (mxn) matrix of input coefficients of resources, showing the input of
resources for industries that are required to produce a unit of product,

- R;is the m-dimensional vector of non-renewable resources.

Assumptions

Throughout the paper it is assumed that the matrices 4, B and D are nonnegative, B is
nonsingular and ¢, is a nonnegative vector.

Then the above two equations can be written in explicit vector form:

L

where [ is the (nxn) identity matrix.

For further analysis it is more convenient to write the above discrete-time linear system in the
well-known matrix-vector form as:

qe+1= Agqe + Bqug (3)



I+B'(I-4) 0

. . B .
Where 4, = { b J is the (m+n)x(m+n) state matrix, B, = - [0 } 1s (m+n)xn

X

effect matrix of the control, g, = [R }s the m-+n - dimensional state vector and ;= ¢, is the n -

t

dimensional control vector.

In the next section we examine the controllability of system (3).

3. Controllabillity of the model

The controllability of a system means the property of being able to steer the system from any
given initial state to any other state in a finite time period by means of a suitable choice of

control functions (Elaydi1996). Applying Kalman’s theorem (Kalman 1960, see also Elaydi
1996) we get that system (3) is controllable if and only if the rank condition

ranleq 4,8, .. A'H_IBqJ:ern

q
is satisfied.

Lemma 1.
The system (3) is controllable if and only if rank D = m.

Proof. By using the property of matrices related to theirs rank it is easy to see that the
controllability of system (3) is equivalent to the controllability of the system g+, = ( A, —I)q;+
Bqut

Define the nxnm controllability matrix W:= [Bq (4,-0B, .. (Aq ) B, J=

{B‘i B'U-AB" | |(B'U-4)*B" (B'(I-4)"" "B @
0 [|-DB" N\=DB'U-4)B" | |-DBU-4)""B ||

The controllability condition that W has rank m+n means that the rows of the matrix W are
linearly independent. We shall show that the matrix 7 has exactly m+n linearly independent
rows if and only if rank D = m.

Let y; be an n and y, an m dimensional vector of constants. Matrix W has exactly m+n linearly
independent rows if whenever [yl, yz]W = 0, then we must have y; = 0 and y, = 0. By

applying the notation (4) on equation [yl, yz] W =0 we obtain

D] {B‘l} B'I-AB || (B U-4)B" | [(B'U-4)"""B" _
v o T - pa- \=DB'(I-AB" | |-DB(1 - A4)"" B '

©)



As rank B™'= n therefore the equation [yl, yz]W = 0 can be solved only for y, =0. By
substituing y, =0 in eq.(5) we get

0..] [31} B'(I-AB || (BU-4)B" | [(B'U-4)""B" 0
2o |- ps- \-DB (- 4B || -DB U - A)""2 B ’

after multiplication we obtain
lo.~y,DB ™ .~y,DB™'(I - 4)B™,...~y,D(B™'(I - 4))""* B"'|= 0.
Taking the common factor y,D out of the left-hand side of the previous equation we have

7, D[0~B™ =B (I - 4B .. .~(B”'(I - 4))""B"'|=0.
(6)

Supposing that rank D = m then the above equality holds only for y, =0, hence rankW =
mtn.

Conversely, suppose rankW = m+n we prove that rank D = m. If rank D < m then there exists
v, #0such that y,D=0, that is the equality (6) holds not only for y, =0 therefore

rankW<m+n. This completes the proof of the Lemma.

In the next section supposing a given control, that is supposing a given consumption we
examine the trajectories of system (1) and we examine the effect of a balanced path on the use
of the non-renewable environmental resources.

4. Balanced growth path

In the following we study the balanced growth solution of the system (1)
corresponding to a given growth rate « (&=0) supposing that both production and
consumption increase at the same rate «. Under the assumptions given the balanced growth
solution of the model (1) have the form x,= (1+a)'xy and ¢, = (1+a)'cy where ¢>0 . Let us

substitute the former expressions for x; and ¢, in the eq. (1). It follows that the following must
hold

([—A—O{B) Xo= Cop (7)

From the eq. (7) follows that the output configuration x, corresponding to the balanced
growth path, depends on o and ¢y as well. Next we make conditions for the existence of
nonnegative output configuration x,.

Throughout we will use the following notation. Let M be an arbitrary (nxn) matrix. Then M
>0 (M nonnegative) means each element of M is nonnegative and for nonnegative M, A,(M)
denotes the Frobenius root of M that is the nonnegative real eigenvalue of M dominant in
modulus.



Lemma 2.
The output configuration X, corresponding to eq. (7) exists and it is nonnegative if ae[0, o,
where oy is the marginal growth rate such that A;(A + oyB) = 1.

Proof. Since matrix A + aB is nonnegative according to Perron-Frobenius’s theorem
(Morishima 1964), there exists the Frobenius root of matrix 4 + aB. If this latter is less than 1
then the inverse of matrix /-4—aB exists and it is nonnegative too.

The condition 4;(4 + aB) <1 it is obviously fulfilled for & = 0 in case of productive systems.
By applying Perron-Frobenius’s theorem it is easy to see that on the one hand 4,(4 + aB) is a
monotone increasing function of & for >0 and on the other hand there exists such an ', (a'
= 71655) such that 4;(4 + 'B) > 1. From the previous reasoning and because A,(4 + aB) is a

continuous function of ¢, it follows that by increasing the value of « the value of 4,(4 + aB)
will increase too. Hence there exists an ay such that 4,(4 + ayB) = 1. Then we conclude that
for every «a chosen from the interval of [0, ¢y[ holds the inequality 4,(4 + aB) <1 which
implies that (I~A—aB) ' exists and (J-A—aB) ~'>0. Therefore for every o, ac[0, ap [ and
given consumption vector ¢y there exists a nonnegative output configuration x, that is

x0 (@) = (I-4—aB) " ¢y. (8)

Proposition 1. The marginal growth rate o is the solution of the following eigenvalue
problem of

B (E-A)v = v

for some nonzero n-dimensional vector v.

Proof. According to Lemma 2. for the marginal growth rate ¢ holds the equality 4,(4 + aB)
= 1. This implies that there exists a nonzero vector v such that (4 + ayB)v = v. Equivalently,

this relation may be written as (E—4)'Bv = —v which is equivalent to the eigenvalue
20

problem which was to be proved.

Proposition 2. Let C and D be (nxn) nonnegative matrices and C < D. Then holds C* < D* .

Proof. The assumption means that 0< ¢; < d;; for all i,j e Ln. Using the former inequalities

and the rule for multiplication of matrices we obtain C* = {Z cikc,g} < [z d,d kj} =D’
k=1 k=1

Remark. 1t is easy to see that the proposition 1. holds also for any power of matrices C and D .



Lemma 3.

Consider that the nonnegative output configuration xy( ) exists. Then
(1) xo( @) is a monotone increasing function of ¢, for a€[0, ay[
(i1) xo( ) is an unbounded function for a0, ay| .

Proof. (1) Let a;, a2€[0, o[ and ;< a; . Since a;€[0, o[ therefore 4,(4 + a;B) <1. The
latter implies that (I-4—a;B) ' exists and (I-A—a;B) ' = Z(A +alB)i . We get in similar
i=0

way that (I~A—a,B) ' = Z (A + azB)i . By applying the Proposition 1. and the Remark for C
i=0

=4+qBand D=A4+ a,B

o0

we obtain Z(A + alB)i < Z(A + azB)i that is (I—~A—a;B) "' < (I-A—a>B) ~'. By multiplying
i=0 i=0

both sides of the former inequality by the nonnegative vector ¢y we get that xo(a;) < xo( ).

This completes the proof of (i) of the lemma.

(ii) Assume that &« — o . Using the continuity of 4;(4 + aB) we have 4/(4 + aB) — 1. It is
;. Hence for ¢ - oy we have A, (I-4—aB) !
1-4(4+aB)

—> oo. Then if the nonnegative eigenvector corresponding to A; (I~A—aB) ' is not normal to
the nonnegative consumption vector ¢y we have xg()—> oo. This concludes that xy()
increases over every boundary.

easy to see that 1, (E-4A—aB) ' =

5. The examination of the resources

In the following we investgate the evaluation of the stocks of exhaustible resources
corresponding to the balanced growth path of the system (3).We first determine the solution
of the difference eq.(2) for a balanced growth with a nonnegative growth rate « for the output
as well as the final consumption. Let us substitute the balanced growth solution x, = (1 +a)tx()
of eq.(1) in eq.(2) then by a simple iteration we obtain the following formula (9) for the
stocks of resources

(l+a) -1

R,=Ry— DX()(OC). (9)

Next we give the following lemmas:

Lemma 4.
The stocks of resources R, in dependence of « is a monotone decreasing function of ¢,
for a[0, ap.

The proof of this lemma is fairly simple on the basis of Lemma 3. and by using that (1+¢)" is
a monotone increasing geometric sequence for 1+a> 1.

Lemma 5.
The stocks of resources R, in dependence of ¢y is a monotone decreasing function of ¢, for
any nonnegative consumption vector cy.



This statement can be prooved by similar arguments as that in the proof of Lemma 4.

Remark. In economic terms these lemmas mean that a lower rate of growth or lower

consumption level results in a longer lasting of the stocks of non-renewable resources.

6. Estimation of the exhaustion of resources

In the below evaluation we estimate how long will cover the stocks of scare resources
the inputs of production under the assumption we have already made related to the growth of
production and consumption, as well. In the expression (9) we intend to determine the
maximal ¢ for which the stocks of resources R, are still nonnegative (R, > 0). Denote by T the
requested maximal time period. Then it must holds the following equality for this 7’

(1+a)T—1:mm( (R,), J

o i

(Dx, (a))i

where (), denotes the i” component of the respective vector. By expressing T we obtain

R,)).
In amin%+l

(qu (a))i
T= ! for a€]0, ay]|.
In(1+ )

7. Conclusions and further research

In this paper we have investigated a generalised dynamic Leontief model. The basic
model was extended with the resource exploitation. It was proved that this augmented model
is controllable if the input matrix of resources has a full rank. In the second part of the paper
we have examined the effect of the balanced growth path on the resource exploitation. It was
shown that the stock of non-renewable resources lasts longer if both the growth rate and the
consumption level are chosen lower.

In a next research we could examine the effect of the balanced growth path on the
quality of the renewable environmental resources. How will influence the use of the
environmental resources (emission) this balanced path if the emission level is limited by a
legal environmental standard. Another possibility would be an extension of the analysed
model with the recycling of reusable materials. In this case the coefficients of input matrix of
resources will be smaller than it were before and the environmental resources last longer for
the next generation. This investigation will supply the concept of the sustainable
development.

These examinations ignore the influence of prices on the growth path. This dual
problem could reply on the question about the economic effectivity of production. This newly
established price system could control the production in an environmental consciousness way.
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